Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Nome			
N. Matricola		Ancona, 8 settembre 2014	

1. È data la funzione

$$f(x) = (x^3 + \alpha x^2) e^{-|x|}$$

con $\alpha \in \mathbb{R}$. Determinare α in modo che f(x) sia derivabile in tutto il suo dominio e studiare quindi la funzione per $\alpha = 1$.

- 2. Calcolare l'integrale della funzione $f(x,y) = x^2 y$ sul settore circolare di centro l'origine, semiapertura $\alpha = \pi/4$ ed avente l'asse delle y come asse di simmetria.
- 3. Determinare la soluzione del problema di Cauchy

$$y' = x y^2$$
$$y(0) = 1.$$

- 4. Determinare le radici terze dei numeri complessi: $z_1 = 1$ e $z_2 = -1$, fornendone sia la rappresentazione polare che quella cartesiana.
- 5. Calcolare il raggio di convergenza della serie

$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n.$$

6. Giustificare al meglio che

$$f(x) = \sqrt{37} - 6 \approx \frac{1}{12}$$

usando le serie di Mac Laurin.

7. Determinare il dominio naturale della funzione

$$f(x,y) = \frac{1}{e^x - y} e^{-x}$$

e rappresentarlo graficamente sul piano cartesiano. Scrivere quindi le derivate parziali prime della funzione e calcolarle nel punto (0,0).

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Nome			
N. Matricola		Ancona, 8 settembre 2014	

1. È data la funzione

$$f(x) = (x^2 + \alpha x) e^{-|x|}$$

con $\alpha \in \mathbb{R}$. Determinare α in modo che f(x) sia derivabile in tutto il suo dominio e studiare quindi la funzione per $\alpha = 1$.

- 2. Calcolare l'integrale della funzione $f(x,y) = xy^2$ sul settore circolare di centro l'origine, semiapertura $\alpha = \pi/4$ ed avente l'asse delle x come asse di simmetria.
- 3. Determinare la soluzione del problema di Cauchy

$$y' = x^2 y$$
$$y(0) = 1.$$

- 4. Determinare le radici terze dei numeri complessi: $z_1 = i$ e $z_2 = -i$, fornendone sia la rappresentazione polare che quella cartesiana.
- 5. Calcolare il raggio di convergenza della serie

$$\sum_{n=0}^{\infty} \frac{(3n)!}{(n!)^3} x^n.$$

6. Giustificare al meglio che

$$f(x) = \sqrt{26} - 5 \approx \frac{1}{10}$$

usando le serie di Mac Laurin.

7. Determinare il dominio naturale della funzione

$$f(x,y) = \frac{1}{x^2 - y} e^{-y}$$

e rappresentarlo graficamente sul piano cartesiano. Scrivere quindi le derivate parziali prime della funzione e calcolarle nel punto (1,0).