Virtual Laboratories > 7. Point Estimation > 1 2 3 4 5 6

5. Best Unbiased Estimators

Basic Theory

Consider again the basic statistical model, in which we have a random experiment that results in an observable random variable X taking values in a set S. Once again, the experiment is typically to sample n objects from a population and record one or more measurements for each item. In this case, the observable random variable has the form

$$X = (X_1, X_2, ..., X_n)$$

where X_i is the vector of measurements for the i^{th} item.

Suppose that θ is a real parameter of the distribution of X, taking values in a parameter space $\Theta \subseteq \mathbb{R}$. Let f_{θ} denote the probability density function of X for $\theta \in \Theta$. Note that the expected value, variance, and covariance operators also depend on θ , although we will sometimes suppress this to keep the notation from becoming too unwieldy.

Suppose now that $\lambda = \lambda(\theta)$ is a parameter of interest that is derived from θ . In this section we will consider the general problem of finding the best estimator of λ among a given class of unbiased estimators. Recall that if *U* is an unbiased estimator of λ , then $\operatorname{var}_{\theta}(U)$ is the mean square error. Thus, if *U* and *V* are unbiased estimators of λ and

$$\operatorname{var}_{\theta}(U) \leq \operatorname{var}_{\theta}(V)$$
 for all $\theta \in \Theta$

Then *U* is a **uniformly better** estimator than *V*. On the other hand, it may be the case that *U* has smaller variance for some values of θ while *V* has smaller variance for other values of θ . If *U* is uniformly better than any other unbiased estimator of λ , then *U* is a **Uniformly Minimum Variance Unbiased Estimator** (UMVUE) of λ .

The Cramér-Rao Lower Bound

We will show that under mild conditions, there is a lower bound on the variance of any unbiased estimator of the parameter λ . Thus, if we can find an estimator that achieves this lower bound for all $\theta \in \Theta$, then the estimator must be an UM VUE of λ .

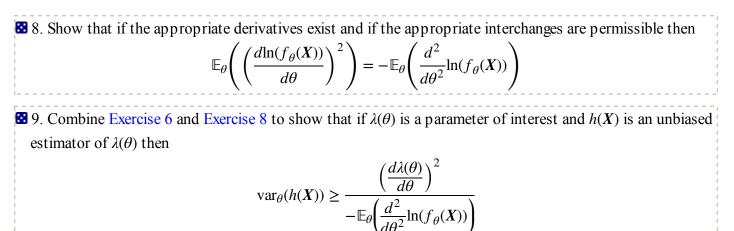
The assumption that we must make is that if $h: S \to \mathbb{R}$ with $\mathbb{E}_{\theta}(|h(X)|) < \infty$ for $\theta \in \Theta$ then

$$\frac{d\mathbb{E}_{\theta}(h(X))}{d\theta} = \mathbb{E}_{\theta}\left(h(X)\frac{d\mathrm{ln}(f_{\theta}(X))}{d\theta}\right), \quad \theta \in \Theta$$

1. Show that this condition is equivalent to the assumption that the derivative operator $\frac{d}{d\theta}$ can be interchanged with the expected value operator \mathbb{E}_{θ} . Generally speaking, the fundamental assumption will be satisfied if $f_{\theta}(x)$ is differentiable as a function of θ , with a derivative that is jointly continuous in x and θ , and if the support set { $x \in S : f_{\theta}(x) > 0$ } does not depend on θ . ■ 2. Show that $\mathbb{E}_{\theta}\left(\frac{d\ln(f_{\theta}(\mathbf{x}))}{d\theta}\right) = 0$ for $\theta \in \Theta$. *Hint*: Use the basic condition with $h(\mathbf{x}) = 1$ for $\mathbf{x} \in S$. 3. Show that $\operatorname{cov}_{\theta}\left(h(X), \frac{d\ln(f_{\theta}(X))}{d\theta}\right) = \frac{d\mathbb{E}_{\theta}(h(X))}{d\theta}$ a. First note that the covariance is simply the expected value of the product of the variables, since the second variable has mean 0 by the Exercise 2. b. Use the basic condition. **8** 4. Prove the following result. *Hint*: The variable has mean 0. $\operatorname{var}_{\theta}\left(\frac{d\ln(f_{\theta}(X))}{d\theta}\right) = \mathbb{E}_{\theta}\left(\left(\frac{d\ln(f_{\theta}(X))}{d\theta}\right)^{2}\right)$ **5**. Finally, use the Cauchy-Scharwtz inequality to establish the Cramér-Rao lower bound, named for Harold Cramér and CR Rao: $\operatorname{var}_{\theta}(h(X)) \geq \frac{\left(\frac{d \mathbb{E}_{\theta}(h(X))}{d\theta}\right)^{2}}{\mathbb{E}_{\theta}\left(\left(\frac{d \ln(f_{\theta}(X))}{d\theta}\right)^{2}\right)}$ **3** 6. Suppose now that $\lambda(\theta)$ is a parameter of interest and h(X) is an unbiased estimator of $\lambda(\theta)$. Use the Cramér-Rao lower bound to show that $\operatorname{var}_{\theta}(h(X)) \geq \frac{\left(\frac{d\lambda(\theta)}{d\theta}\right)}{\mathbb{E}_{\theta}\left(\left(\frac{d\ln(f_{\theta}(X))}{d\theta}\right)^{2}\right)}$ $\mathbf{\mathbb{Z}}$ 7. Show that equality holds in Exercise 6, and hence $h(\mathbf{X})$ is an UM VUE, if and only if there exists a function $u(\theta)$ such that (with probability 1) $h(X) = \lambda(\theta) + u(\theta) \frac{d\ln(f_{\theta}(X))}{d\theta}$ a. Equality holds in the Cauchy-Schwartz inequality if and only if the random variables are linear transformations of each other. b. Recall also that $\frac{d\ln(f_{\theta}(X))}{d\theta}$ has mean 0.

The quantity $\mathbb{E}_{\theta}\left(\left(\frac{d\ln(f_{\theta}(X))}{d\theta}\right)^2\right)$ that occurs in the denominator of the lower bounds of Exercise 5 and

Exercise 6 is called the Fisher information number of X, named after Sir Ronald Fisher. The following exercises gives an alternate version for the expression in Exercise 6 that is usually computationally better.



Random Samples

Suppose now that $X = (X_1, X_2, ..., X_n)$ is a random sample of size *n* from the distribution of a random variable *X* having probability density function g_{θ} .

10. Prove the following special case of the Cramér-Rao lower bound. *Hint*: The joint probability density function is the product of the marginal probability density functions.

$$\operatorname{var}_{\theta}(h(\boldsymbol{X})) \geq \frac{\left(\frac{d\mathbb{E}_{\theta}(h(\boldsymbol{X}))}{d\theta}\right)^{2}}{n \,\mathbb{E}_{\theta}\left(\left(\frac{d\ln(g_{\theta}(\boldsymbol{X}))}{d\theta}\right)^{2}\right)}$$

11. Suppose now that $\lambda(\theta)$ is a parameter of interest and h(X) is an unbiased estimator of $\lambda(\theta)$. Use Exercise 10 to show that

 $\operatorname{var}_{\theta}(h(X)) \geq \frac{\left(\frac{d\lambda(\theta)}{d\theta}\right)^{2}}{n \operatorname{\mathbb{E}}_{\theta}\left(\left(\frac{d\ln(g_{\theta}(X))}{d\theta}\right)^{2}\right)}$

From Exercise 11, note that the Cramér-Rao lower bound varies inversely with the sample size n.

■ 12. In the setting of the previous exercise, show the following result (assume that the appropriate derivatives exist and the appropriate interchanges are permissible): $\operatorname{var}_{\theta}(h(X)) \geq \frac{\left(\frac{d\lambda(\theta)}{d\theta}\right)^{2}}{-n \mathbb{E}_{\theta}\left(\frac{d^{2}}{d\theta^{2}}\ln(g_{\theta}(X))\right)}$

Examples and Special Cases

We will apply the results above to several parametric families of distributions. First we need to recall some standard notation. Suppose that $X = (X_2, X_2, ..., X_n)$ is a random sample of size *n* from the distribution of a real-valued random variable *X* with mean μ . The sample mean is

$$M = \frac{1}{n} \sum_{i=1}^{n} X_i$$

The special and standard versions of the sample variance are, respectively,

$$W^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2}, \quad S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - M)^{2}$$

The Bernoulli Distribution

Suppose that $X = (X_1, X_2, ..., X_n)$ is a random sample of size *n* from the Bernoulli distribution with unknown success parameter $p \in (0, 1)$. The basic assumption is satisfied.

I3. Show that ¹/_n p (1 − p) is the Cramér-Rao lower bound for the variance of unbiased estimators of p.
I4. Show that the sample mean M (which is the proportion of successes) attains the lower bound in the previous exercise and hence is an UMVUE of p.

The Poisson Distribution

Suppose that $X = (X_1, X_2, ..., X_n)$ is a random sample of size *n* from the Poisson distribution with unknown parameter $a \in (0, \infty)$. The basic assumption is satisfied.

15 15. Show that $\frac{a}{n}$ is the Cramér-Rao lower bound for the variance of unbiased estimators of *a*.

16. Show that the sample mean M attains the lower bound in the previous exercise and hence is an UM VUE of a.

The Normal Distribution

Suppose that $X = (X_1, X_2, ..., X_n)$ is a random sample of size *n* from the normal distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 \in (0, \infty)$. The basic assumption is satisfied with respect to both of these parameters. Recall also that the fourth central moment is $\mathbb{E}((X - \mu)^4) = 3\sigma^4$.

17. Show that $\frac{\sigma^2}{n}$ is the Cramér-Rao lower bound for the variance of unbiased estimators of μ .

18. Show that the sample mean *M* attains the lower bound in the previous exercise and hence is an

UMVUE of μ .
■ 19. Show that $\frac{2\sigma^4}{n}$ is the Cramér-Rao lower bound for the variance of unbiased estimators of σ^2 .
20. Show (or recall) that the sample variance S^2 has variance $\frac{2\sigma^4}{n-1}$ and hence does not attain the lower bound in the previous exercise.
■ 21. Show that if μ is known, then the special sample variance W^2 attains the lower bound in Exercise 19 and hence is an UMVUE of σ^2 .
22. Show that if μ is unknown, no unbiased estimator of σ^2 attains the Cramér-Rao lower bound in Exercise 19. <i>Hint:</i> Use the result in Exercise 7.

The Gamma Distribution

Suppose that $X = (X_1, X_2, ..., X_n)$ is a random sample of size *n* from the gamma distribution known shape parameter *k* and unknown scale parameter $b \in (0, \infty)$. The basic assumption is satisfied with respect to *b*.

23 . Show that $\frac{b^2}{nk}$ is the Cramér-Rao lower bound for the variance of unbiased estimators of <i>b</i> .	
24 . Show that $\frac{M}{k}$ attains the lower bound in the previous exercise and hence is an UMVUE of <i>b</i> .	

The Beta Distribution

Suppose that $X = (X_1, X_2, ..., X_n)$ is a random sample of size *n* from the beta distribution with left parameter a > 0 and right parameter b = 1. The basic assumption is satisfied with respect to *a*.

25. Show or recall that the mean and variance of the distribution are

a.
$$\mu = \frac{a}{a+1}$$

b. $\sigma^2 = \frac{a}{(a+1)^2 (a+2)}$

26. Show that the Cramér-Rao lower bound for the variance of unbiased estimators of μ is a²/n (a+1)⁴.
 27. Show that the sample mean *M* does not achieve the Cramér-Rao lower bound in the previous exercise, and hence is not an UMVUE of μ.

The Uniform Distribution

Suppose that $X = (X_1, X_2, ..., X_n)$ is a random sample of size *n* from the uniform distribution on [0, *a*] where a > 0 is the unknown parameter.

28 . Show that the basic assumption is <i>not</i> satisfied.
29. Show that the Cramér-Rao lower bound for the variance of unbiased estimators of a is $\frac{a^2}{n}$. Of course,
the Cramér-Rao Theorem does not apply, by the previous exercise.
30. Show (or recall) that $V = \frac{n+1}{n} \max \{X_1, X_2,, X_n\}$ is unbiased and has variance $\frac{a^2}{n(n+2)}$, which is
smaller than the Cramér-Rao bound in the previous exercise.

The reason that the basic assumption is not satisfied is that the support set $\{x \in \mathbb{R} : f_a(x) > 0\}$ depends on the parameter *a*.

Best Linear Unbiased Estimators

We now consider a somewhat specialized problem, but one that fits the general theme of this section. Suppose that $X = (X_1, X_2, ..., X_n)$ is a sequence of observable real-valued random variables that are uncorrelated and have the same unknown mean μ , but possibly different standard deviations. Let

$$\boldsymbol{\sigma} = (\sigma_1, \sigma_2, ..., \sigma_n)$$
 where $\sigma_i = \operatorname{sd}(X_i)$ for $i \in \{1, 2, ..., n\}$.

We will consider estimators of μ that are linear functions of the outcome variables. Specifically, we will consider estimators of the following form, where the vector of coefficients $c = (c_1, c_2, ..., c_n)$ is to be determined:

$$Y = \sum_{i=1}^{n} c_i X_i$$

31 . Show that <i>Y</i> is unbiased if and only if $\sum_{i=1}^{n} c_i = 1$.	
2 32. Compute the variance of <i>Y</i> in terms of <i>c</i> and σ .	
33 . Use the method of Lagrange multipliers (named after Joseph-Louis Lagrange) to is minimized, subject to the unbiased constraint, when	show that the variance
$c_j = \frac{1/{\sigma_j}^2}{\sum_{i=1}^n 1/{\sigma_i}^2}, j \in \{1, 2,, n\}$	

This exercise shows how to construct the **Best Linear Unbiased Estimator** (**BLUE**) of μ , assuming that the vector of standard deviations σ is known.

Suppose now that $\sigma_i = \sigma$ for $i \in \{1, 2, ..., n\}$ so that the outcome variables have the same standard deviation. In particular, this would be the case if the outcome variables form a random sample of size *n* from a distribution with mean μ and standard deviation σ .

2 34. Show that in this case the variance is minimized when $c_i =$	$\frac{1}{n}$ for each <i>i</i> and hence $Y = M$, the sample
mean.	ן ו ו

This exercise shows that the sample mean M is the best linear unbiased estimator of μ when the standard deviations are the same, and that moreover, we do not need to know the value of the standard deviation.

Virtual Laboratories > 7. Point Estimation > 1 2 3 4 5 6 Contents | Applets | Data Sets | Biographies | External Resources | Keywords | Feedback | ©