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5. Best Unbiased Estimators

Basic Theory

Consider again the basic statistical model, in which we have a random experiment that results in an observable
random variable X taking values in a set S. Once again, the experiment is typically to sample n objects from a

population and record one or more measurements for each item. In this case, the observable random variable
has the form

X = (X1 , X2 , ..., Xn )

where Xi  is the vector of measurements for the ith  item.

Suppose that θ is a real parameter of the distribution of X, taking values in a parameter space Θ ⊆ ℝ. Let f θ

denote the probability density function of X for θ ∈ Θ. Note that the expected value, variance, and covariance

operators also depend on θ, although we will sometimes suppress this to keep the notation from becoming

too unwieldy.

Suppose now that λ = λ(θ) is a parameter of interest that is derived from θ. In this section we will consider

the general problem of finding the best estimator of λ among a given class of unbiased estimators. Recall that if

U is an unbiased estimator of λ, then varθ(U) is the mean square error. Thus, if U and V  are unbiased

estimators of λ and

varθ(U) ≤ varθ(V) for all  θ ∈ Θ

Then U is a uniformly better estimator than V . On the other hand, it may be the case that U has smaller

variance for some values of θ while V  has smaller variance for other values of θ. If U is uniformly better than

any other unbiased estimator of λ, then U is a Uniformly Minimum Variance Unbiased Estimator

(UMVUE) of λ.

The Cramér-Rao Lower Bound

We will show that under mild conditions, there is a lower bound on the variance of any unbiased estimator of
the parameter λ. Thus, if we can find an estimator that achieves this lower bound for all θ ∈ Θ, then the

estimator must be an UMVUE of λ.

The assumption that we must make is that if h : S → ℝ with �θ(||h(X)||) < ∞ for θ ∈ Θ then

d�θ(h(X))

dθ
= �θ(

h(X) 
dln( f θ(X))

dθ )
, θ ∈ Θ
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 1. Show that this condition is equivalent to the assumption that the derivative operator d
dθ

 can be

interchanged with the expected value operator �θ.

Generally speaking, the fundamental assumption will be satisfied if f θ(x) is differentiable as a function of θ,

with a derivative that is jointly continuous in x and θ, and if the support set {x ∈ S : f θ(x) > 0} does not

depend on θ.

 2. Show that �θ
⎛
⎝⎜

dln( f θ(X))
dθ

⎞
⎠⎟

= 0 for θ ∈ Θ. Hint: Use the basic condition with h(x) = 1 for x ∈ S.

 3. Show that

covθ(
h(X),

dln( f θ(X))

dθ )
=

d�θ(h(X))

dθ

First note that the covariance is simply the expected value of the product of the variables, since the
second variable has mean 0 by the Exercise 2.

a.

Use the basic condition.b.

 4. Prove the following result. Hint: The variable has mean 0.

varθ(

dln( f θ(X))

dθ )
= �θ

((

dln( f θ(X))

dθ )

2

)

 5. Finally, use the Cauchy-Scharwtz inequality to establish the Cramér-Rao lower bound, named for
Harold Cramér and CR Rao:

varθ(h(X)) ≥
(

d�θ(h(X))
dθ )

2

�θ(
⎛
⎝⎜
dln( f θ(X))

dθ
⎞
⎠⎟

2

)

 6. Suppose now that λ(θ) is a parameter of interest and h(X) is an unbiased estimator of λ(θ). Use the

Cramér-Rao lower bound to show that

varθ(h(X)) ≥
(

dλ(θ)
dθ )

2

�θ(
⎛
⎝⎜
dln( f θ(X))

dθ
⎞
⎠⎟

2

)

 7. Show that equality holds in Exercise 6, and hence h(X) is an UMVUE, if and only if there exists a

function u(θ) such that (with probability 1)

h(X) = λ(θ) + u(θ) 
dln( f θ(X))

dθ

Equality holds in the Cauchy-Schwartz inequality if and only if the random variables are linear
transformations of each other.

a.

Recall also that 
dln( f θ(X))

dθ
 has mean 0.b.

Best Unbiased Estimators http://www.math.uah.edu/stat/point/Unbiased.xhtml

2 of 7 7/16/2009 6:13 AM



The quantity �θ(
⎛
⎝⎜

dln( f θ(X))
dθ

⎞
⎠⎟

2

)
 that occurs in the denominator of the lower bounds of Exercise 5 and

Exercise 6 is called the Fisher information number of X, named after Sir Ronald Fisher. The following

exercises gives an alternate version for the expression in Exercise 6 that is usually computationally better.

 8. Show that if the appropriate derivatives exist and if the appropriate interchanges are permissible then

�θ
((

dln( f θ(X))

dθ )

2

)
= −�θ

(

d2

dθ2
ln( f θ(X))

)

 9. Combine Exercise 6 and Exercise 8 to show that if λ(θ) is a parameter of interest and h(X) is an unbiased

estimator of λ(θ) then

varθ(h(X)) ≥
(

dλ(θ)
dθ )

2

−�θ
⎛
⎝⎜

d2

dθ2
ln( f θ(X))

⎞
⎠⎟

Random Samples

Suppose now that X = (X1 , X2 , ..., Xn ) is a random sample of size n from the distribution of a random

variable X having probability density function gθ.

 10. Prove the following special case of the Cramér-Rao lower bound. Hint: The joint probability density
function is the product of the marginal probability density functions.

varθ(h(X)) ≥
(

d�θ(h(X))
dθ )

2

n �θ(
⎛
⎝⎜
dln(gθ(X))

dθ
⎞
⎠⎟

2

)

 11. Suppose now that λ(θ) is a parameter of interest and h(X) is an unbiased estimator of λ(θ). Use

Exercise 10 to show that

varθ(h(X)) ≥
(

dλ(θ)
dθ )

2

n �θ(
⎛
⎝⎜
dln(gθ(X))

dθ
⎞
⎠⎟

2

)

From Exercise 11, note that the Cramér-Rao lower bound varies inversely with the sample size n.

 12. In the setting of the previous exercise, show the following result (assume that the appropriate
derivatives exist and the appropriate interchanges are permissible):

varθ(h(X)) ≥
(

dλ(θ)
dθ )

2

−n �θ
⎛
⎝⎜

d2

dθ2
ln(gθ(X))

⎞
⎠⎟
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Examples and Special Cases

We will apply the results above to several parametric families of distributions. First we need to recall some
standard notation. Suppose that X = (X2 , X2 , ..., Xn ) is a random sample of size n from the distribution of a

real-valued random variable X with mean μ. The sample mean is

M =
1

n
 ∑i =1

n Xi

The special and standard versions of the sample variance are, respectively,

W 2 =
1

n
 ∑i =1

n (Xi − μ)2 , S2 =
1

n − 1
 ∑i =1

n (Xi − M)2

The Bernoulli Distribution

Suppose that X = (X1 , X2 , ..., Xn ) is a random sample of size n from the Bernoulli distribution with

unknown success parameter p ∈ 0 1( ), . The basic assumption is satisfied.

 13. Show that 1
n
 p (1 − p) is the Cramér-Rao lower bound for the variance of unbiased estimators of p.

 14. Show that the sample mean M (which is the proportion of successes) attains the lower bound in the

previous exercise and hence is an UMVUE of p.

The Poisson Distribution

Suppose that X = (X1 , X2 , ..., Xn ) is a random sample of size n from the Poisson distribution with unknown

parameter a ∈ 0 ∞( ), . The basic assumption is satisfied.

 15. Show that a
n
 is the Cramér-Rao lower bound for the variance of unbiased estimators of a.

 16. Show that the sample mean M attains the lower bound in the previous exercise and hence is an

UMVUE of a.

The Normal Distribution

Suppose that X = (X1 , X2 , ..., Xn ) is a random sample of size n from the normal distribution with mean

μ ∈ ℝ and variance σ2 ∈ 0 ∞( ), . The basic assumption is satisfied with respect to both of these parameters.

Recall also that the fourth central moment is �((X − μ)4
) = 3 σ4 .

 17. Show that σ2

n
 is the Cramér-Rao lower bound for the variance of unbiased estimators of μ.

 18. Show that the sample mean M attains the lower bound in the previous exercise and hence is an
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UMVUE of μ.

 19. Show that 2 σ 4

n
 is the Cramér-Rao lower bound for the variance of unbiased estimators of σ2 .

 20. Show (or recall) that the sample variance S2  has variance 2 σ 4

n −1
 and hence does not attain the lower

bound in the previous exercise.

 21. Show that if μ is known, then the special sample variance W 2  attains the lower bound in Exercise 19

and hence is an UMVUE of σ2 .

 22. Show that if μ is unknown, no unbiased estimator of σ2  attains the Cramér-Rao lower bound in

Exercise 19. Hint: Use the result in Exercise 7.

The Gamma Distribution

Suppose that X = (X1 , X2 , ..., Xn ) is a random sample of size n from the gamma distribution known shape

parameter k and unknown scale parameter b ∈ 0 ∞( ), . The basic assumption is satisfied with respect to b.

 23. Show that b 2

n k  is the Cramér-Rao lower bound for the variance of unbiased estimators of b.

 24. Show that M
k

 attains the lower bound in the previous exercise and hence is an UMVUE of b.

The Beta Distribution

Suppose that X = (X1 , X2 , ..., Xn ) is a random sample of size n from the beta distribution with left

parameter a > 0 and right parameter b = 1. The basic assumption is satisfied with respect to a.

 25. Show or recall that the mean and variance of the distribution are

μ = a
a +1

a.

σ2 = a

(a +1)2  (a +2)
b.

 26. Show that the Cramér-Rao lower bound for the variance of unbiased estimators of μ is a 2

n (a +1)4
.

 27. Show that the sample mean M does not achieve the Cramér-Rao lower bound in the previous exercise,

and hence is not an UMVUE of μ.

The Uniform Distribution

Suppose that X = (X1 , X2 , ..., Xn ) is a random sample of size n from the uniform distribution on 0 a[ ],

where a > 0 is the unknown parameter.
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 28. Show that the basic assumption is not satisfied.

 29. Show that the Cramér-Rao lower bound for the variance of unbiased estimators of a is a 2

n
. Of course,

the Cramér-Rao Theorem does not apply, by the previous exercise.

 30. Show (or recall) that V = n +1
n
 max {X1 , X2 , ..., Xn} is unbiased and has variance a 2

n (n +2)
, which is

smaller than the Cramér-Rao bound in the previous exercise.

The reason that the basic assumption is not satisfied is that the support set {x ∈ ℝ : f a (x) > 0} depends on

the parameter a.

Best Linear Unbiased Estimators

We now consider a somewhat specialized problem, but one that fits the general theme of this section.
Suppose that X = (X1 , X2 , ..., Xn ) is a sequence of observable real-valued random variables that are

uncorrelated and have the same unknown mean μ, but possibly different standard deviations. Let

σ = (σ1 , σ2 , ..., σn ) where σi = sd(Xi ) for i ∈ {1, 2, ..., n}.

We will consider estimators of μ that are linear functions of the outcome variables. Specifically, we will

consider estimators of the following form, where the vector of coefficients c = (c1 , c2 , ..., cn ) is to be

determined:

Y = ∑i =1
n ci  Xi

 31. Show that Y  is unbiased if and only if ∑i =1
n ci = 1.

 32. Compute the variance of Y  in terms of c and σ.

 33. Use the method of Lagrange multipliers (named after Joseph-Louis Lagrange) to show that the variance
is minimized, subject to the unbiased constraint, when

c j =
1 / σ j

2

∑i =1
n 1 / σi

2
,  j ∈ {1, 2, ..., n}

This exercise shows how to construct the Best Linear Unbiased Estimator (BLUE) of μ, assuming that the

vector of standard deviations σ is known.

Suppose now that σi = σ for i ∈ {1, 2, ..., n} so that the outcome variables have the same standard deviation.

In particular, this would be the case if the outcome variables form a random sample of size n from a

distribution with mean μ and standard deviation σ.

 34. Show that in this case the variance is minimized when ci = 1
n
 for each i and hence Y = M, the sample

mean.
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This exercise shows that the sample mean M is the best linear unbiased estimator of μ when the standard

deviations are the same, and that moreover, we do not need to know the value of the standard deviation.
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