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2. The Hypergeometric Distribution

Basic Theory

Suppose that we have a dichotomous population D. That is, a population that consists of two types of

objects, which we will refer to as type 1 and type 0. For example, we could have

balls in an urn that are either red or green
a batch of components that are either good or defective
a population of people who are either male or female
a population of animals that are either tagged or untagged

Let R denote the subset of D consisting of the type 1 objects, and suppose that #(D) = m and #(R) = r. As in

the basic sampling model, we sample n objects at random from D. In this section, our only concern is in the

types of the objects, so let Xi  denote the type of the ith  object chosen (1 or 0). The random vector of types is

X = (X1 , X2 , ..., Xn )

Our main interest is the random variable Y  that gives the number of type 1 objects in the sample. Note that Y

is a counting variable, and thus like all counting variables, can be written as a sum of indicator variables, in this
case the type variables:

Y = ∑i =1
n Xi

We will assume initially that the sampling is without replacement, which is usually the realistic setting with
dichotomous populations.

The Probability Density Function

Recall that since the sampling is without replacement, the unordered sample is uniformly distributed over the
set of all combinations of size n chosen from D. This observation leads to a simple combinatorial derivation

of the probability density function of Y .

 1. Show that

ℙ(Y = k) =
(

r
k) (

m − r
n − k )

(
m
n )

, k ∈ {max {0, n − (m − r)}, ..., min {n, r}}

This is known as the hypergeometric distribution with parameters m, r, and n.

 2. Show the following alternative form of the hypergeometric probability density function in two ways:
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combinatorially by treating the outcome as a permutation of size n chosen from the population of m balls,

and algebraically, starting from the result in Exercise 1.

ℙ(Y = k) =
⎛
⎝⎜
n

k

⎞
⎠⎟
 
r (k)  (m − r)(n −k)

m (n)
, k ∈ {max {0, n − (m − r)}, ..., min {n, r}}

Recall our convention that j(i) = (
j
i ) = 0 for i > j. With this convention, the formulas for the probability

density function in Exercise 1 and Exercise 2 are correct for k ∈ {0, 1, ..., n}. We usually use this simpler set

as the set of values for the hypergeometric distribution.

 3. Let v =
(r +1) (n +1)

m+1
. Show that

ℙ(Y = k) > ℙ(Y = k − 1) if and only if k < v.a.

The hypergeometric distribution is unimodal, at first increasing and then decreasing.b.
The mode occurs at ⌊v⌋ if v is not an integer, and at v and v − 1 if v is an integer greater than 0.c.

 4. In the ball and urn experiment, select sampling without replacement. Vary the parameters and note the
shape of the probability density function. For selected values of the parameters, run the experiment 1000
times with an update frequency of 10 and watch the apparent convergence of the relative frequency
function to the probability density function.

Moments

In the following exercises, we will derive the mean and variance of Y . The exchangeable property of the

indicator variables, and properties of covariance and correlation will play a key role.

 5. Show that �(Xi ) = r
m

 for each i.

 6. Show that �(Y) = n  r
m

.

 7. Show that var(Xi ) = r
m
 (1 − r

m) for any i.

 8. Show that for distinct i and j,

cov(Xi , X j) = − r
m
 (1 − r

m) 
1

m−1
a.

cor(Xi , X j) = − 1
m−1

b.

Note from Exercise 8 that the event of a type 1 object on draw i and the event of a type 1 object on draw j

are negatively correlated, but the correlation depends only on the population size and not on the number of
type 1 objects. Note also that the correlation is perfect if m = 2. Think about these result intuitively.

 9. Use the results of Exercise 7 and Exercise 8 to show that var(Y) = n  r
m
 (1 − r

m) 
m−n
m−1

The Hypergeometric Distribution http://www.math.uah.edu/stat/urn/Hypergeometric.xhtml

2 of 10 7/16/2009 6:46 AM



Note that var(Y) = 0 if r = 0 or r = m or n = m. Think about these results.

 10. In the ball and urn experiment, select sampling without replacement. Vary the parameters and note the
size and location of the mean/standard deviation bar. For selected values of the parameters, run the
experiment 1000 times updating every 10 runs and watch the apparent convergence of the empirical
moments to the true moments.

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is usually not realistic in applications.

 11. Show that (X1 , X2 , ..., Xn ) is a sequence of n Bernoulli trials with success parameter r
m

.

The following results now follow immediately from the general theory of Bernoulli trials, although
modifications of the arguments above could also be used.

 12. Show that Y  has the binomial distribution with parameters n and r
m

:

ℙ(Y = k) =
⎛
⎝⎜
n

k

⎞
⎠⎟
 ⎛
⎝⎜

r

m

⎞
⎠⎟

k

 ⎛
⎝⎜
1 −

r

m

⎞
⎠⎟

n −k

, k ∈ {0, 1, ..., n}

 13. Show that

�(Y) = n  r
m

.a.

var(Y) = n  r
m
 (1 − r

m)b.

Note that for any values of the parameters, the mean of Y  is the same, whether the sampling is with or

without replacement. On the other hand, the variance of Y  is smaller, by a factor of m−n
m−1

, when the sampling

is without replacement than with replacement. Think about these results. The factor m−n
m−1

 is sometimes called

the finite population correction factor.

 14. In the ball and urn experiment, vary the parameters and switch between sampling without replacement
and sampling with replacement. Note the difference between the graphs of the hypergeometric probability
density function and the binomial probability density function. Note also the difference between the
mean/standard deviation bars. For selected values of the parameters and for the two different sampling
modes, run the simulation 1000 times, updating every 10 runs.

Convergence of the Hypergeometric Distribution to the Binomial

Suppose that the population size m is very large compared to the sample size n. In this case, it seems

reasonable that sampling without replacement is not too much different than sampling with replacement, and
hence the hypergeometric distribution should be well approximated by the binomial. The following exercise
makes this observation precise. Practically, it is a valuable result, since the binomial distribution has fewer
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parameters. More specifically, we do not need to know the population size m and the number of type 1

objects r individually, but only in the ratio r
m

.

 15. Suppose that r = rm depends on m and that rm
m

→ p as m → ∞. Show that for fixed n, the

hypergeometric probability density function with parameters m, rm, and n converges to the binomial

probability density function with parameters n and p. Hint: Use the representation in Exercise 2.

The type of convergence in the previous exercise is known as convergence in distribution.

 16. In the ball and urn experiment, vary the parameters and switch between sampling without replacement
and sampling with replacement. Note the difference between the graphs of the hypergeometric probability
density function and the binomial probability density function. In particular, note the similarity when m is

large and n small. For selected values of the parameters, and for both sampling modes, run the experiment

1000 times updating every 10 runs.

 17. In the setting of Exercise 15, show that the mean and variance of the hypergeometric distribution
converge to the mean and variance of the binomial distribution as m → ∞.

Inferences in the Hypergeometric Model

In many real problems, the parameters r or m (or both) may be unknown. In this case we are interested in

drawing inferences about the unknown parameters based on our observation of Y , the number of type 1

objects in the sample. We will assume initially that the sampling is without replacement, the realistic setting
in most applications.

Estimation of r with m Known

Suppose that the size of the population m is known but that the number of type 1 objects r is unknown. This

type of problem could arise, for example, if we had a batch of m manufactured items containing an unknown

number r of defective items. It would be too costly and perhaps destructive to test all m items, so we might

instead select n items at random and test those.

A simple estimator of r can be derived by hoping that the sample proportion of type 1 objects is close to the

population proportion of type 1 objects. That is,

Y

n
≈

r

m
 so  r ≈

m

n
 Y

.

 18. Show that �(
m
n
 Y) = r.

The result in the previous exercise means that m
n
 Y  is an unbiased estimator of r. Hence the variance is a

measure of the quality of the estimator, in the mean square sense.
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 19. Show that var(
m
n
 Y) = (m − r) r

n
 m−n
m−1

.

 20. Show that for fixed m and r, var(
m
n
 Y) → 0 as n↑m.

Thus, the estimator improves as the sample size increases; this property is known as consistency.

 21. In the ball and urn experiment, select sampling without replacement. For selected values of the
parameters, run the experiment 100 times, updating after each run.

On each run, compare the true value of r with the estimated value.a.

Compute the average error and the average squared error over the 100 runs.b.
Compare the average squared error with the variance in Exercise 19.c.

Estimation of m with r Known

Suppose now that the number of type 1 objects r is known, but the population size m is unknown. As an

example of this type of problem, suppose that we have a lake containing m fish where m is unknown. We

capture r of the fish, tag them, and return them to the lake. Next we capture n of the fish and observe Y , the

number of tagged fish in the sample. We wish to estimate m from this data. In this context, the estimation

problem is sometimes called the capture-recapture problem.

 22. Do you think that the main assumption of the sampling model, namely equally likely samples, would
be satisfied for a real capture-recapture problem? Explain.

Once again, we can derive a simple estimate of m by hoping that the sample proportion of type 1 objects is

close the population proportion of type 1 objects. That is,

Y

n
≈

r

m
 so  m ≈

n r

Y

Thus, our estimator of m is n r
Y

 if Y > 0 and is undefined if Y = 0.

 23. In the ball and urn experiment, select sampling without replacement. For selected values of the
parameters, run the experiment 100 times, updating after each run.

On each run, compare the true value of m with the estimated value.a.

Compute the average error and the average squared error over the 100 runs.b.

 24. Show that if k > 0 then n r
k

 maximizes ℙ(Y = k) as a function of m for fixed r and n. This means that n r
Y

is a maximum likelihood estimator of m.

 25. Use Jensen's inequality to show that �(
n r
Y ) ≥ m.
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Thus, the estimator is biased and tends to over-estimate m. Indeed, if n ≤ m − r, so that ℙ(Y = 0) > 0 then

�(
n r
Y ) = ∞.

For another approach to estimating m, see the section on Order Statistics.

Sampling with Replacement

Suppose now that the sampling is with replacement, even though this is unrealistic in most applications. In

this case, Y  has the binomial distribution with parameters n and r
m

.

 26. Show that

�(
m
n
 Y) = r.a.

var(
m
n
 Y) =

r (m−r)
n

.b.

Thus, the estimator of r with m known is still unbiased, but has larger mean square error. Thus, sampling

without replacement works better, for any values of the parameters, than sampling with replacement.

 27. In the ball and urn experiment, select sampling with replacement. For selected values of the parameters,
run the experiment 100 times, updating after each run.

On each run, compare the true value of m with the estimated value.a.

Compute the average error and the average squared error over the 100 runs.b.

Examples and Applications

 28. A batch of 100 computer chips contains 10 defective chips. Five chips are chosen at random, without
replacement.

Compute the probability density function of the number of defective chips in the sample.a.
Compute the mean and variance of the number of defective chips in the sampleb.
Find the probability that the sample contains at least one defective chip.c.

 29. A club contains 50 members; 20 are men and 30 are women. A committee of 10 members is chosen at
random.

Compute the probability density function of the number of women on the committee.a.
Give the mean and variance of the number of women on the committee.b.
Give the mean and variance of the number of men on the committee.c.
Find the probability that the committee members are all the same gender.d.
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 30. A small pond contains 1000 fish; 100 are tagged. Suppose that 20 fish are caught.

Compute the probability density function of the number of tagged fish in the sample.a.
Compute the mean and variance of the number of tagged fish in the sample.b.
Compute the probability that the sample contains at least 2 tagged fish.c.
Find the binomial approximation to the probability in (a).d.

 31. Forty percent of the registered voters in a certain district prefer candidate A. Suppose that 10 voters

are chosen at random.

Find the probability density function of the number of voters in the sample who prefer A.a.

Find the mean and variance of the number of voters in the sample who prefer A.b.

Find the probability that at least 5 voters in the sample prefer A.c.

 32. Suppose that 10 memory chips are sampled at random and without replacement from a batch of 100
chips. The chips are tested and 2 are defective. Estimate the number of defective chips in the entire batch.

 33. A voting district has 5000 registered voters. Suppose that 100 voters are selected at random and polled,
and that 40 prefer candidate A. Estimate the number of voters in the district who prefer candidate A.

 34. From a certain lake, 200 fish are caught, tagged and returned to the lake. Then 100 fish are caught and it
turns out that 10 are tagged. Estimate the population of fish in the lake.

Cards

Recall that the general card experiment is to select n cards at random and without replacement from a

standard deck of 52 cards. The special case n = 5 is the poker experiment and the special case n = 13 is the

bridge experiment.

 35. In a poker hand, find the probability density function, mean, and variance of the following random
variables:

The number of spadesa.
The number of acesb.

 36. In a bridge hand, find the probability density function, mean, and variance of the following random
variables:
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The number of heartsa.
The number of honor cards (ace, king, queen, or jack).b.

The Randomized Urn

An interesting thing to do in almost any parametric probability model is to randomize one or more of the
parameters. Done in the right way, this often leads to an interesting new parametric model, since the
distribution of the randomized parameter will often itself belong to a parametric family. This is also the
natural setting to apply Bayes' theorem.

In this section, we will randomize the number of type 1 objects in the basic hypergeometric model.
Specifically, we assume that we have m objects in the population, as before. However, instead of a fixed

number r of type 1 objects, we assume that each of the m objects in the population, independently of the

others, is type 1 with probability p and type 0 with probability 1 − p. We have eliminated one parameter, r,

in favor of a new parameter p with values in the interval 0 1[ ], . Let Ui  denote the type of the ith  object in the

population, so that U = (U1 , U2 , ..., Um) is a sequence of Bernoulli trials with success parameter p. Let

V = U1 + U2 +  ··· + Um denote the number of type 1 objects in the population, so that V  has the binomial

distribution with parameters m and p.

As before, we sample n object from the population. Again we let Xi  denote the type of the ith  object

sampled, and we let Y = X1 + X2 +  ··· + Xn  denote the number of type 1 objects in the sample. We will

consider sampling with and without replacement. In the first case, the sample size can be any positive integer,
but in the second case, the sample size cannot exceed the population size. The key technique in the analysis
of the randomized urn is to condition on V . If we know that V = r, then the model reduces to the model

studied above: a population of size m with r type 1 objects, and a sample of size n.

 37. Show that with either type of sampling,

ℙ(Xi = 1) = �
(

V

m)
= p

Thus, in either model, X is a sequence of identically distributed indicator variables. Ah, but what about

dependence?

 38. Suppose that the sampling is without replacement. Let (x1 , x2 , ..., xn ) ∈ {0, 1}n  and let

y = x1 + x2 +  ··· + xn  Show that

ℙ(X1 = x1 , X2 = xx , ..., Xn = xn ) = �
(

V (y)  (m − V)(n −y)

m (n) )
= py  (1 − p)n −y

Show the first equality by conditioning on V .a.

For the second equation, let G(s, t) = �(sV  tm−V
) and note that G is a probability generating functionb.
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of sorts.

Use the binomial theorem to show that G(s, t) = (p s + (1 − p) t)m.c.

Let G j, k denote the partial derivative of G of order j + k, with j derivatives with respect to the first

argument and k derivatives with respect to the second argument.

d.

Use (b) to show that G j, k(1, 1) = �(V ( j)  (m − V)(k)
).e.

Use (c) to show that G j, k(1, 1) = m ( j +k)  p j  (1 − p)k .f.

From the joint distribution in the previous exercise, we see that X is a sequence of Bernoulli trials with

success parameter p, and hence Y  has the binomial distribution with parameters n and p. We could also argue

that X is a Bernoulli trials sequence directly, by noting that {X1 , X2 , ..., Xn} is a randomly chosen subset of

{U1 , U2 , ..., Um}.

 39. Suppose now that the sampling is with replacement. Again, let (x1 , x2 , ..., xn ) ∈ {0, 1}n  and let

y = x1 + x2 +  ··· + xn  Show that

ℙ(X1 = x1 , X2 = xx , ..., Xn = xn ) = �
(

V y  (m − V)n −y

mn )

A closed form expression for the joint distribution of X, in terms of the parameters m, n, and p is not easy,

but it is at least clear that the joint distribution will not be the same as the one when the sampling is without
replacement. Thus, X is a dependent sequence. Note however that X is an exchangeable sequence, since the

joint distribution is invariant under a permutation of the coordinates (this is a simple consequence of the fact
that the joint distribution depends only on the sum y).

 40. Note that

ℙ(Y = k) =
⎛
⎝⎜
n

k

⎞
⎠⎟
 �

(

V k  (m − V)n −k

mn )
,  k ∈ {0, 1, ..., n}

 41. Let's compute the covariance and correlation of a pair of type variables when the sampling is with
replacement. Suppose that i and j are distinct indices. Show that

ℙ(Xi = 1, X j = 1) = �((
V
m)

2

) =
p (1 − p)

m
+ p2a.

cov(Xi , X j) =
p (1 − p)

m
.b.

cor(Xi , X j) = 1
m

.c.

 42. Now we can get the mean and variance of Y . Show that

�(Y) = n pa.

var(Y) = n p (1 − p) m+n −1
m

b.
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Let's conclude with an interesting observation: For the randomized urn, X is a sequence of independent

variables when the sampling is without replacement but a sequence of dependent variables when the sampling
is with replacement--just the opposite of the situation for the deterministic urn with a fixed number of type 1
objects.
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